ghost-node/pallets/networks/src/math.rs
Uncle Stretch 60b887f812
make MulDiv to be used with any 32 bit unsigned
Signed-off-by: Uncle Stretch <uncle.stretch@ghostchain.io>
2025-08-10 22:07:53 +03:00

136 lines
3.9 KiB
Rust

use crate::AtLeast32BitUnsigned;
pub struct MulDiv<Balance>(core::marker::PhantomData<Balance>);
impl<Balance> MulDiv<Balance>
where
Balance: Copy
+ AtLeast32BitUnsigned
+ num_traits::ops::wrapping::WrappingAdd
+ num_traits::ops::overflowing::OverflowingAdd
+ sp_std::ops::AddAssign
+ sp_std::ops::Not<Output = Balance>
+ sp_std::ops::Shl<Output = Balance>
+ sp_std::ops::Shr<Output = Balance>
+ sp_std::ops::BitAnd<Balance, Output = Balance>,
{
fn zero(&self) -> Balance {
0u32.into()
}
fn one(&self) -> Balance {
1u32.into()
}
fn bit_shift(&self) -> Balance {
let u32_shift: u32 = core::mem::size_of::<Balance>()
.saturating_mul(4)
.try_into()
.unwrap_or_default();
u32_shift.into()
}
fn least_significant_bits(&self, a: Balance) -> Balance {
a & ((self.one() << self.bit_shift()) - self.one())
}
fn most_significant_bits(&self, a: Balance) -> Balance {
a >> self.bit_shift()
}
fn two_complement(&self, a: Balance) -> Balance {
(!a).wrapping_add(&self.one())
}
fn adjusted_ratio(&self, a: Balance) -> Balance {
(self.two_complement(a) / a).wrapping_add(&self.one())
}
fn modulo(&self, a: Balance) -> Balance {
self.two_complement(a) % a
}
fn overflow_resistant_addition(
&self,
a0: Balance,
a1: Balance,
b0: Balance,
b1: Balance,
) -> (Balance, Balance) {
let (r0, overflow) = a0.overflowing_add(&b0);
let overflow: Balance = overflow.then(|| 1u32).unwrap_or_default().into();
let r1 = a1.wrapping_add(&b1).wrapping_add(&overflow);
(r0, r1)
}
fn overflow_resistant_multiplication(&self, a: Balance, b: Balance) -> (Balance, Balance) {
let (a0, a1) = (
self.least_significant_bits(a),
self.most_significant_bits(a),
);
let (b0, b1) = (
self.least_significant_bits(b),
self.most_significant_bits(b),
);
let (x, y) = (a1 * b0, b1 * a0);
let (r0, r1) = (a0 * b0, a1 * b1);
let (r0, r1) = self.overflow_resistant_addition(
r0,
r1,
self.least_significant_bits(x) << self.bit_shift(),
self.most_significant_bits(x),
);
let (r0, r1) = self.overflow_resistant_addition(
r0,
r1,
self.least_significant_bits(y) << self.bit_shift(),
self.most_significant_bits(y),
);
(r0, r1)
}
fn overflow_resistant_division(
&self,
mut a0: Balance,
mut a1: Balance,
b: Balance,
) -> (Balance, Balance) {
if b == self.one() {
return (a0, a1);
}
let zero: Balance = 0u32.into();
let (q, r) = (self.adjusted_ratio(b), self.modulo(b));
let (mut x0, mut x1) = (zero, zero);
while a1 != zero {
let (t0, t1) = self.overflow_resistant_multiplication(a1, q);
let (new_x0, new_x1) = self.overflow_resistant_addition(x0, x1, t0, t1);
x0 = new_x0;
x1 = new_x1;
let (t0, t1) = self.overflow_resistant_multiplication(a1, r);
let (new_a0, new_a1) = self.overflow_resistant_addition(t0, t1, a0, zero);
a0 = new_a0;
a1 = new_a1;
}
self.overflow_resistant_addition(x0, x1, a0 / b, zero)
}
fn mul_div(&self, a: Balance, b: Balance, c: Balance) -> Balance {
let (t0, t1) = self.overflow_resistant_multiplication(a, b);
self.overflow_resistant_division(t0, t1, c).0
}
pub fn calculate(a: Balance, b: Balance, c: Balance) -> Balance {
let inner = MulDiv(core::marker::PhantomData);
if c == inner.zero() {
return c;
}
inner.mul_div(a, b, c)
}
}